
5NETWORKS GOES TO SCHOOL

INTRODUCTION
Transportation, traffic, communication and energy networks form the backbone of our mod-

ern society. To deal with the uncertainty, variation, unpredictability, size and complexity

inherent in these networks, we need to develop radically new ways of thinking. The ulti-

mate goal is to build self-organising and intelligent networks. The NWO-funded Gravitation

programme NETWORKS started in the Summer of 2014 and covers a broad range of topics

dealing with stochastic and algorithmic aspects of networks.

In spring 2023 the fifth “NETWORKS goes to school” event was organised. The aim of the

event is to provide secondary education students and teachers a first mathematical intro-

duction on network science. This book collects the material realised for the “NETWORKS

goes to school” event.

The content of this book is intended for secondary education students and teachers and

aims to provide a first mathematical introduction to network science. In Chapter 1, all the

necessary background material that is required for Chapters 2 and 3 is presented. In Chapter

2, we introduce networks theory by showing how to model and analyse a network with

mathematical techniques. In this chapter, we will try to show mathematical techniques

to find communities in networks. Chapter 3 focuses on road traffic networks, and discusses

how navigation systems select routes. Chapter 4 contains exercises on these two topics

and in Chapter 5 we provide the corresponding solutions. Chapters 2, 3, 4, and 5 were writ-

ten with the help of Martijn Gösgens (Eindhoven University of Technology) and Nikki Lever-

ing (University of Amsterdam).

For more information and the booklets of the first four masterclasses “NETWORKS goes to

school”, please visit networkpages.nl/category/networks-goes-to-school/. This masterclass

is sponsored by the Netherlands Organisation for Scientific Research (NWO) through the

Gravitation grant ”NETWORKS”, and by the European Union’s Horizon 2020 research and

innovation programme under the Marie Skłodowska-Curie grant no. 945045.

On behalf of the NETWORKS programme,

the organising committee of “NETWORKS goes to school”

Mehmet Akif Yildiz (University of Amsterdam)

Nicos Starreveld (University of Amsterdam)

6 NETWORKS GOES TO SCHOOL

7NETWORKS GOES TO SCHOOL

8 NETWORKS GOES TO SCHOOL

Contents

1 Preliminaries 9

1.1 Basic notation . 9

1.2 Probability theory . 11

1.3 Graph theory . 15

2 Networks Theory - Communities in networks 22

2.1 What do communities look like? . 25

2.2 Finding communities in networks . 27

2.2.1 Detecting communities with small radius 28

2.2.2 Divisive community detection . 28

2.2.3 Maximizing partition quality . 28

2.3 Models of communities . 31

2.3.1 Planted Partition Model . 31

2.3.2 PPM with different community sizes . 31

3 Road traffic analysis - Route selection in a network 35

3.1 Efficiency . 35

3.1.1 Bi-directional Dijkstra . 36

3.1.2 A-star algorithm . 37

3.2 Accuracy . 39

3.2.1 Reliable routes . 39

3.2.2 Refinements using probability distributions 41

3.3 Concluding remarks . 44

4 Exercises 46

5 Solutions to exercises 53

9NETWORKS GOES TO SCHOOL

Chapter 1

Preliminaries

1.1. Basic notation
We start by introducing some notation we will use in the sequel:

(1) N for the set of natural numbers, that is N = {1, 2, 3, · · · };
(2) Z for the set of integer numbers, that is Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.
(3) R for the set of real numbers, that is all integer numbers and all the decimal numbers

between them.

(4) We will use the symbol≤ when we want to say “less or equal to”. For example, a ≤ b

means that a is less or equal to b.

(5) We will use the symbol≈ when we want to say “ almost equal to”. For example. π ≈
3.14159.

(6) We will often work with subsets of the natural numbers. For a set I, we write Ic or

N \ I for it’s complement. For example, if I = {2, 4, 6, . . .} contains all even natural
numbers, then Ic contains all odd natural numbers.

(7) The number of elements in some set A is denoted by |A|.
(8) We will use the notationmax andmin for the maximum and minimum value in some

set or of some function. For example

max
i∈{1,2,3}

i2 = 9 and min
j∈{−1,0,1}

(i+ 1) = 0.

On sums
Mathematicians always want to write down mathematics as compactly as possible. But

the notation used should also be clear and representative of what it describes. The typical

notation you encounter when doing mathematics involves the symbol used for summation:∑
.

10 NETWORKS GOES TO SCHOOL

Below we show how
∑

is used to describe a sum. Suppose you want to use the summation

symbol to describe the sum 1+ 2+ 3+ 4+ 5+ 6, then you can write this down compactly as

6∑
k=1

k = 1 + 2 + 3 + 4 + 5 + 6 = 21. (1.1.1)

The advantage of this notation is that you can write down large sums very compactly. For

example, if you want the sum of the first 100 natural numbers, instead of only up to 6, then

you can write this down as

100∑
k=1

k. (1.1.2)

By playing with the value at which the sum starts or ends you see that you can represent

many sums or products using this notation. The general notation is the following:

n∑
k=m

ak, (1.1.3)

where k is the index of summation; ak are indexed variables representing each term of the

sum;m is the lower bound of summation, and n is the upper bounds of summation.

In all the expressions above, either of summations or products, you can remark that the

index k in every step increases by one, it starts from a numberm, then takes the valuem +

1,m + 2 until it reaches the number n. It is also possible to choose the indices from some

set of values. Say for example that you want to compute the sum of the squares of all even

numbers greater or equal to 4 and less or equal to 20. You can define the set of indexes you

want to sum over, in this case

I = {N ∈ N : 4 ≤ N ≤ 20 andN is even} = {4, 6, 8, 10, 12, 14, 16, 18, 20}.

Then the desired sum can be written as∑
k∈I

k2 = 16 + 36 + 64 + 100 + 144 + 296 + 324 + 400 = 1380.

This sum could also be written compactly as follows∑
k∈I

k2 =
∑

4≤k≤20, k even

k2.

For two quantities x and y, we say x is a lower bound for y if x ≤ y. Similarly, we say x is an

upper bound for y if x ≥ y.

11NETWORKS GOES TO SCHOOL

1.2. Probability theory

Probability theory is the area of mathematics that studies random phenomena. For example

if the experiment is tossing a coin, then there are two possible outcomes, either heads or

tails. Each outcome occurs with probability 0.5. In order to study such a random experi-

ment we use random variables.

Random variable

A random variableX is a variable whose possible values are outcomes of a random

experiment. We will also use the term stochastic as a synonym for random.

We define a random variable by giving the state space, i.e. the set of all possible values the

variable can take, and the probability function, which yields the corresponding probability

that a given outcome will occur. For the coin toss for example we can define a random vari-

able by assigning to the outcome heads the value 1 and to the outcome tails the value 0. In

this case we have

X(heads) = 1 and X(tails) = 0.

The probability function for this random variable is given by

P(X = 1) = P(heads) = 0.5,

and

P(X = 0) = P(tails) = 0.5,

where for a possible set of outcomes A, P(A) denotes the probability that A occurs. A ran-

dom variable can be discrete or continuous.

Discrete random variables

A random variableX is called discrete when it can take countable many values, for

simplicity we can just say that its values are the integer numbers, that isX ∈ Z.

Continuous random variables

A random variableX is called continuous when it can take continuously many val-

ues, for simplicity we can just say that its values are the real numbers that isX ∈ R.

For a discrete random variable, we can write down the probability that it equals a specific

value. For a continuous random variable, this is not possible, as there is a continuum of pos-

sible values. We can however specify the probability that a continuous random variable falls

12 NETWORKS GOES TO SCHOOL

in a range of values by using the density function. The probability that a continuous ran-

dom variable X assumes values in the interval [a, b] is given by the integral of the density

function, denoted by fX , over that interval:∫ b

a

fX(x)dx = P(X ∈ [a, b]).

The result of this integration gives the area delimited by the graph of the density function

fX , the x-axis and the vertical lines given by x = a and x = b.

Expectation of a random variable

For a random variableX, discrete or continuous, we define the expectation, or ex-

pected value, as the average of all independent realisations of the random variable.

We denote the expectation ofX by E[X].

For a discrete random variable its expectation is defined by

E[X] =

∞∑
k=0

kP(X = k). (1.2.1)

For a continuous random variable its expectation is defined by

E[X] =

∫ ∞

−∞
xfX(x)dx, (1.2.2)

where fX denotes the density function of the random variable, this means that

fX(x)dx = P(X ∈ dx). (1.2.3)

As we will see in the sequel, if the random variable takes only positive values then the in-

tegral in the expectation starts from 0 instead of−∞.

Bernoulli random variable
Bernoulli random variable

A Bernoulli random variable describes the outcome of any single random experi-

ment that asks a yes-no question, like tossing a coin.

It takes the value 1 with probability p and the value 0 with probability 1 − p. Consider for

example a coin where one side is heavier, then this is a biased coin where one side is fa-

voured. We will use B(p) to denote a Bernoulli random variable with probability p. A Bernoulli

random variable has expectation given by

E[B(p)] = 1 · P(B(p) = 1) + 0 · P(B(p) = 0) = p. (1.2.4)

13NETWORKS GOES TO SCHOOL

Binomial random variable
Binomial random variable

A binomial random variable describes the number of successes in a sequence of

independent experiments, each asking a yes–no question.

We make the following assumptions:

• the number n of observations is fixed;

• each observation is independent of the other observations;

• each observation represents one of two outcomes: success or failure (yes-no);

• the probability p of success is exactly the same for each trial.

Under these assumptions, we can describe each binomial random variable by using the

parameters n and p. We will denote a binomial random variable by B(n, p). The binomial

random variable B(n, p) has state space {0, 1, . . . , n} as it counts the number of successful
trials, and the probability that B(n, p) is equal to k is given by

P(B(n, p) = k) =

(
n

k

)
pk(1− p)n−k

where (
n

k

)
=

n!

k!(n− k)!

is the binomial coefficient. The symbol
(
n
k

)
is read as ‘n choose k’, as this is the number

of ways to choose k different elements from a total of n elements, where the order of ele-

ments does not matter. The factorial of n is denoted by n! and it is equal to the product

n · (n− 1) · (n− 2) · . . . · 1. The binomial random variable has expectation equal to

E[B(n, p)] =
∞∑

k=0

kP(B(n, p) = k) =
n∑

k=0

k

(
n

k

)
pk(1− p)n−k = np. (1.2.5)

The exact derivation of this result is far away from the scope of this booklet.

EXAMPLE 1.2.1. Suppose that we have a total of 5 colours, and we wish to know how many

combinations there are of 3 different colours, where the order of the colours does not mat-

ter. Then n = 5 and k = 3, and (
5

3

)
=

5!

3!2!
= 10.

We could also reason in a different way. For the first choice we have a total of 5 possible

colours, for the second choice we have 4 possible colours and for the third choice we have 3

possible colours. The total of combinations of three colours is then 5 · 4 · 3 = 5!/2!. However,

the order of colours did not matter so we still have to divide by the number of ways in which

we can order 3 colours, which is 3 · 2 · 1 = 3!.

14 NETWORKS GOES TO SCHOOL

EXAMPLE 1.2.2. Consider a coin toss, where possible outcomes are heads or tails. Sup-

pose that we have a fair coin, i.e., the probability for heads is the same as it is for tails. If

we toss the coin 10 times, then the number of coin tosses that came heads from those ten

tosses has a binomial distribution with parameters n = 10 and p = 1
2
. The probability of

getting exactly four heads is equal to

P(X = 4) =

(
10

4

)(
1

2

)4(
1− 1

2

)10−4

=
105

512
≈ 0.205.

Normal random variable
Normal random variable

The normal random variable is a continuous random variable that has a symmetric

density function. The plot of the density function has a bell-shaped form.

A normal random variable is characterised by two parameters, µ and σ2. Its probability

density function is given by

fµ,σ2(x) =
1

σ
√
2π

e
− (x−µ)2

2σ2 , x ∈ R.

Figure 1.2.1 shows what this density function looks like for multiple values of µ and σ2.

From this figure, it is clear that the density function is symmetric. Thus, the outcome of a

normal random variable with parameters µ and σ2 is with probability 1
2
smaller than µ, and

with probability 1
2
it is larger. Hence, it is not surprising that the expectation of such a ran-

dom variable is equal to the parameter µ.

The parameter σ2 determines how likely it is that the outcome of a normal random variable

deviates from its expectation µ. In other words, if σ is large, the bell shape in Figure 1.2.1

will be much wider, and the actual value of the random variable is likely to be further away

from µ. Because of this feature, the parameter σ2 is also called the variance, and the square

root of the variance, namely σ itself, is called the standard deviation.

The bell shape of the normal random variable occurs naturally in a variety of settings. Sample

averages, for example the average height of a large group of persons, tend to be approxim-

ately normally distributed, which is why normal random variables are often encountered.

The distribution function is however hard to compute. IfN (µ, σ2) denotes a normal random

variable with parameters µ and σ2, we have

P(N (µ, σ2) ≤ t) =

∫ t

x=0

1

σ
√
2π

e
− (x−µ)2

2σ2 dx.

Since there is no easy way to compute this integral, we often use tables such as Table 4.0.4

at the end of Chapter 4, page 52. This table lists, in case µ = 0 and σ = 1, the value of

15NETWORKS GOES TO SCHOOL

Figure 1.2.1. The density function of a normally distributed random variable with parameters µ

and σ2.

P(N (0, 1) ≤ t) for various values of t between 0 and 3.4. For example, using the table, we

find that

P(N (0, 1) ≤ 1.23) = 0.8907,

but due to the symmetry also that

P(N (0, 1) ≤ −0.87) = P(N (0, 1) > 0.87)

= 1− P(N (0, 1) ≤ 0.87)

= 1− 0.8078 = 0.1922.

But how do we go about finding the distribution function of normal random variables with

µ 6= 0 or σ2 6= 1? It turns out that we can then also use this table. For a normal random

variable with parameters µ and σ2, we have for any number u that

P(N (µ, σ2) ≤ u) = P
(
N (0, 1) ≤ u− µ

σ

)
.

So, if we want to compute P(N (1, 4) ≤ 3) for example, we use the table and look up the

value for t = u−µ
σ

= 3−1√
4

= 1, and find that P(N (1, 4) ≤ 3) = P(N (0, 1) ≤ 1) = 0.8413.

1.3. Graph theory
An intuitive definition of a network would be a ‘collection of objects that are interconnected

in some way’. Think for example of a collection of people, who can be interconnected by

16 NETWORKS GOES TO SCHOOL

friendships; or a collection of cities, which can be interconnected by roads. To make this

idea precise, we turn to graph theory.

Graph

A graph is a pairG = (V,E), where

• V is the set of nodes or vertices;

• E is the set of edges, connecting the nodes.

Typically, we number the nodes from {1, 2, 3, . . . , }. We denote an edge between two nodes
i and j by {i, j}. To define a graph, we can write down the sets V and E.

EXAMPLE 1.3.1. Consider

V = {1, 2, 3, 4, 5, 6}, E = {{1, 2}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5}, {4, 6}}.

ThenG = (V,E) is a graph with six nodes and seven edges.

It may be very useful to have a graphical representation of a graph. We do this by typically

drawing nodes as a circle with a label in it, and edges as a line between nodes. However,

you are free to choose any representation you may like! In fact, the location of the nodes is

also arbitrary, it only matters the way in which the edges connect the nodes together.

EXAMPLE 1.3.1 (Continued). In Figure 1.3.1 we see two ways in which the graphG can be

drawn.

6

4

5 1

23

2 3

5 4 6

1

Figure 1.3.1. Two different representations of the graph in Example 1.3.1.

Degree of a node in a graph

The degree of a node v in a graphG = (V,E), denoted by d(v), is the number of

neighbors of v. In the graph above for example the degree of node 1 is d(1) = 2, and

of node 5 is d(5) = 3.

17NETWORKS GOES TO SCHOOL

1

2

3

4

5

6

7

4

7

2

5

1

5

3

1

3

8

Figure 1.3.2. A network with seven locations

Path between two nodes in a graph

A path between two nodes in a graph, say v and w, is a sequence of edges which

joins a sequence of nodes from v to w. In the graph in Figure 1.3.1 for example, the

sequence 6 → 4 → 3 → 2 forms a path from 6 to 2. On the other side, the sequence

6 → 4 → 3 → 1 is not a path since {3, 1} is not an edge in the graph. A shortest path
between two nodes is a path using the least amount of edges. The shortest path

from node 6 to node 1 for example has length 3.

Finding the shortest route within a network
Now that we have seen how graphs can be used to represent networks, there are many

questions that can be asked about those networks. For instance, what is the shortest route

from one location in a network to another? This is a question that we ask our favourite route

planner on a daily basis.

To answer this question, let us look at the network depicted in Figure 1.3.2. This figure con-

tains a graph, and let us assume that each node in this graph is a location in a network. Fur-

thermore, an edge between two of these nodes represents a road between these two loca-

tions. The numbers in the figure represent the length of the roads, let us say in kilometres.

Using these numbers, we can calculate the distance of a route in a network. For example,

in Figure 1.3.2, it is clear that if we would travel from node 1 to node 4 via node 2, the dis-

tance traversed would be 4+5 = 9 kilometres. But, if we were to travel from node 1 to node

4 via node 3 instead, we would have to cover 7+1 = 8 kilometres. And if we were to travel

from node 1 to node 4 via node 2 and 3, we would have to cover 4+2+1= 7 kilometres.

Thus, ‘the shortest route’ from node 1 to node 4 is the route 1 → 2 → 3 → 4.

For this particular network, we can thus see in an eye blink what the shortest route from

node 1 to node 4 is. But the shortest route from node 1 to node 7 is already harder to de-

18 NETWORKS GOES TO SCHOOL

nodes 1 2 3 4 5 6 7

Step 1 - (4, 1)∗ (7, 1) No edge No edge No edge No edge

Step 2 - - (6, 2)∗ (9, 2) No edge No edge No edge

Step 3 - - - (7, 3)∗ (11, 3) No edge No edge

Step 4 - - - - (10, 4) (8, 4)∗ No edge

Step 5 - - - - (10, 4)∗ - (16, 6)
Step 6 - - - - - - (13, 5)∗

Table 1.3.1. Dijkstra's shortest route algorithm for the network in Figure 1.3.2.

termine. And then, this is just a network with seven locations. Finding the shortest route in

a much larger network by trial and error is simply not doable.

So how do we go about this? We will require a more systematic way of finding the shortest

route. Luckily, it exists. We will use an algorithm!

Algorithm

An algorithm is a step-by-step procedure to perform a given task. Algorithms can be

executed by computers, but also by persons.

Dijkstra’s algorithm. More particularly, we will now consider an algorithm that finds

the shortest route in a network. This algorithm was conceived in 1959 by Edsger W. Dijk-

stra, who was a Dutch systems scientist, programmer, software engineer, science essayist

and pioneer in computing science.

The algorithm consists of iteratively performing a number of steps. In each of these steps,

preliminary routes will be improved and in each step, a definitive shortest route from the

starting node to any of the other nodes will be found. For the bookkeeping of these routes,

we will keep records on each node. These records give an upper bound on the distance of

the shortest route of the starting node to the corresponding node. In each of the steps,

these records will be adjusted, and also one of these nodes is marked as ’permanent’, in-

dicating that a definitive shortest route from node 1 to the completed node has been found.

All this is perhaps best demonstrated by means of an example: we want to find the shortest

route from node 1 to node 7 in Figure 1.3.2. Since the network in this figure has 7 loca-

tions, we will need 7-1 = 6 steps of the algorithm. In Table 1.3.1, we will keep track of all

the bookkeeping that the algorithm generates.

To start the algorithm, it is worth noting that we already know the shortest route from node

1 to node 1: this route has distance zero, since we are already there! As such, we mark

node 1 as ‘permanent’, and we will not consider node 1 in the steps we are going to per-

form, as is reflected in the table by ‘-’. The algorithm can now be started with node 1 as

a permanent node. The rest of the nodes are considered ‘non-permanent’. In each of the

19NETWORKS GOES TO SCHOOL

steps, we will check which non-permanent nodes can be reached by permanent ones, and

mark a non-permanent node as permanent. We do this as follows.

Step 1: Since node 1 is the only permanent node, we see from Figure 1.3.2 that only nodes

2 and 3 can be reached now from permanent nodes. Node 2 can be reached dir-

ectly from node 1 with a distance of 4, so in the table, we write (4, 1) in the first row

(corresponding to Step 1) in the column of node 2. Similarly, we write 7 for node 3

in the first row, as node 3 can be reached directly from node 1 with distance (7, 1).

In the bracket we always write two numbers, the first number is the distance from a

permanent node and the second represents the node from which it can be reached.

Nodes 4, 5, 6 and 7 can not be reached directly from node 1, and hence we write ‘No

edge’ for these nodes in the first row.

The final part of the step consists of marking a non-permanent node as permanent.

We will always mark the node with the lowest distance in the row as permanent. In

this case, this is node 2 with distance 4 from node 1, so we make node 2 perman-

ent. We denote this by adding an asterisk to the record of node 1 in the first row. The

algorithm now says that the shortest route from node 1 to node 2 now simply is the

direct route 1 → 2 with distance 4.

Step 2: In Step 2 we check whether routes can be made shorter using node 2 as an interme-

diate node in the route towards other nodes. For node 3, we know from Step 1 that it

can be reached directly from node 1 within distance 7. However, since node 2 now is

permanent, node 3 can also be reached from node 2: the edge {2, 3} has distance 2,
and we know that node 2 itself can be reached with distance 4. Therefore, node 3 can

also be reached within distance 2 + 4 = 6, when going via node 2. Therefore, we write

(6, 2) for node 3 in Table 1.3.1 in the row corresponding to Step 2 and in the column

corresponding to node 3. We conclude that we have made the route from node 1 to

node 3 one kilometre shorter!

Node 4 can now also be reached using edge {2, 4} with distance 5. As node 2 itself
can be reached within distance 4, node 4 can thus now be reached within distance

5+4 = 9 with preceding node 2. Therefore, we write the record (9, 2) in the table.

From nodes 1 and 2, there are still no routes possible to nodes 5,6 and 7, leading

to a ’No edge’-record.

Between nodes 3 and 4, node 3 has the shorter distance (namely 6), and therefore

we now mark node 3 as permanent with an asterisk.

Step 3: We follow the exact same procedure as the previous steps. Namely, we check whether

the now permanent node 3 leads to shorter routes for the other nodes. This is the

case for node 4. While in Step 2 we found a distance of 9, we now find a distance 7

via node 3, leading to the record (7, 3). Indeed, node 3 could be reached within dis-

tance 6, and the edge {3, 4} has distance 1. Node 5 can now be reached via the per-

manent node 3: namely, node 3 can be reached within distance 6, and edge {3, 5}

20 NETWORKS GOES TO SCHOOL

has distance 5, leading to a total distance 6+5=11 and the record (11, 4).

The route to node 4 (distance 7) is now shorter than the route to node 5 (distance

11), so node 4 becomes a permanent node. At this point, nodes 1-4 are permanent,

whereas nodes 5, 6 and 7 are still non-permanent. Hence, steps 4-6 will deal with

the latter nodes.

Step 4: As node 4 is now a permanent node, we check how this affects the shortest routes

of the still non-permanent nodes 5-7. Indeed, the route from node 1 to node 5 can

now be made shorter by routing through node 4: we first take the shortest route to

node 4 (distance 7 found in step 3) and then use the edge {4, 5} (distance 3). This
route has distance 7+3=10, which is shorter than the distance 11 in the record for

node 5 in step 3. Therefore, the record for node 5 in step 4 becomes (10, 4). However,

node 6 can now also be reached, via the new permanent node 4. This route will have

distance 7+1 = 8.

Since node 6 now has the shorter of the two found distances of nodes 5 and 6, node

6 will become permanent. The shortest route from node 1 to node 6 has distance 8,

and cannot be made shorter in future steps.

Step 5: There are just two non-permanent nodes left at this point: nodes 5 and 7. There is no

direct edge between the most recently permanent node 6 and node 5, so the record

of node 5 remains the same as in the previous step: (10, 4). Node 7 can now finally

be reached through node 6 (distance 8 found in step 5) and edge {6, 7} (distance 8),
leading to distance 8+8=16. As a result, we will flag node 5 as permanent, with dis-

tance 10 and preceding node 4.

Step 6: Only node 7 is an non-permanent node at this point. We only need to check whether

node 5, which we flagged as permanent in the previous step, leads to a shorter route

than the one found in step 5 via node 6. This turns out to be the case: if we first go

to node 5 (distance 10), and then take the direct edge {5, 7} (distance 3), the route
will only have distance 13, rather than 16 as found in Step 5. Therefore, the shortest

route from node 1 to node 7 has distance with preceding node 5, leading to the re-

cord (13, 5) in the table. We finally mark node 7 as permanent, so that there are no

non-permanent nodes anymore.

Now that we have performed all the steps of Dijkstra’s algorithm, we know that the shortest

route from node 1 to node 7 has a distance of 13. To find which route this exactly is, we

look at Table 1.3.1, and look at the records with an asterisk (i.e. the records of the nodes

when they were marked as a permanent node). In the row of step 6, we see that the pre-

ceding node of node 7 is node 5, meaning that the shortest route of node 1 to node 7 coin-

cides with the shortest route of node 1 to node 5, plus the additional edge {5, 7}. Node 5
was made permanent in step 5 with preceding node 4, meaning that the shortest route from

node 1 to node 7 must have the form 1 → ... → 4 → 5 → 7. Continuing like this, we find the

shortest route 1 → 2 → 3 → 4 → 5 → 7.

21NETWORKS GOES TO SCHOOL

Figure 1.3.3. A real time animation of Dijkstra's algorithm on the map of Brielle, the animation

can be found on:

networkpages.nl/finding-the-shortest-route-to-your-holiday-destination-dijkstras-algorithm/.

On the Network Pages

For further reading on probability theory, algorithms, networks and graph theory

have a look at networkpages.nl/category/basic-notions/!

22 NETWORKS GOES TO SCHOOL

Chapter 2

Networks Theory -

Communities in networks

In many networks, a natural grouping of the network nodes can be discovered. In social

networks, for example, friend groups are often visible as groups of nodes that have many

internal connections. In network science, such groups of nodes that are more strongly con-

nected to each other than to the rest of the network are referred to as communities. Com-

munities are not just limited to social networks. For example, we can consider Wikipedia as

a network of pages where two pages are connected if there is a link from one to the other.

In this Wikipedia network, pages will have many links to pages with related subject, forming

groups that are clearly visible in the network.

There are many different reasons why researchers are interested in communities. In the ex-

ample of the Wikipedia network, this helps find pages that are likely about a similar subject.

The surprising thing is that this can be done without reading the specific Wikipedia pages,

but by just looking at the links between them. This can be useful for automatically classify-

ing pages into categories or detecting which pages may be wrongly classified.

Network communities are also relevant in epidemiology, where the presence of such com-

munities influences the way a virus spreads through a population. Diseases spread easily

within communities and contacts between people of different communities may lead a virus

to enter a new community. If the communities are very closely connected, like households

for example, then it may even be more useful to ignore the individual people in the network

and instead consider the population as a network of households.

Nevertheless, the main application of community detection is to obtain a better under-

standing of the network. In modern times, networks tend to be enormous, consisting of

millions (e.g., Wikipedia) or even billions of nodes (e.g., Facebook). When one tries to un-

derstand such a large network, knowledge of a single node and its connections is less rel-

23NETWORKS GOES TO SCHOOL

0

1

2

3

4

5

6

7

8

10

11

12

13

17

19

21

31

30

9
27

28

32

16

33

14

15

18

20
22

23

25

29

24

26

Figure 2.0.1. Zachary's karate club network. Node 0 is the instructor while node 33 is the clubs

administrator. The colors indicate the split after the conflict. Source: Wikipedia

evant, while it becomes more useful to look at which groups the nodes form and how these

groups are connected to each other.

The karate network. Community detection is usually applied to networks that are so

large that it is impossible to get insight into them without using all sorts of advanced al-

gorithms and statistics. However, to understand and experiment with community detection

methods, it often helps to try them out on networks that are small and easy to understand.

In the field of community detection, one particular network that is often used is Zachary’s

karate club network, a small network of 34 members of a karate club from the 70s. This

karate club was studied by an anthropologist, who kept track of which members met each

other outside of the club. During this research, a conflict arose among the administrator and

the trainer of the club, which led the club to split up into two equal halves. Community de-

tection methods are often ‘benchmarked’ based on how well they are able to recognize this

split based on the network. Figure 2.0.1 shows the network, as well as the split into the two

groups.

The FIFA2022 network. We can also consider a tournament as a network of teams,

where teams are connected if they have played a match against each other. If we take the

football world cup of 2022, for example, we get a network of 32 nodes and 64 edges. The

minimal degree of this network is 3, corresponding to the teams that dropped out after the

24 NETWORKS GOES TO SCHOOL

Korea Republic

Mexico

Ghana

Qatar

USA

Uruguay

France

Ecuador

Wales

Morocco

Iran

Poland

Costa Rica

Tunisia

Belgium

Brazil

Germany

Serbia

Saudi Arabia

Netherlands

Japan

CanadaPortugal

England

Argentina

Croatia

Senegal

Australia

Spain

Denmark

Cameroon

Switzerland

Figure 2.0.2. The network of the FIFA World Cup from 2022. Every node corresponds to a

participating country while an edge indicates that the two teams played a match against each

other.

group stage, while the tournament champion has maximum degree 7. The network is shown

in Figure 2.0.2.

Notation. We denote a network byN , and denote its node set byN and its edge set by

E. We denote the number of edges between two subsets of nodes A,B ⊆ N by `(A,B)

and write `(A) = `(A,A) for the number of edges inside A. For a set A ⊆ V , we denote

the sum of degrees by d(A) =
∑
i∈A

d(i). We write C for a partition into communities, which

we represent as a set of sets C = {C1, C2, . . . , C|C|}, where the r-th community is denoted
by Cr and the number of communities is denoted by |C|. We denote the community that a
node i belongs to by C(i). Thus, i ∈ C(i) holds by definition for every node i. The number of

possible node pairs is given by
(|N|

2

)
= |N | · (|N | − 1)/2, see Exercise 1.

25NETWORKS GOES TO SCHOOL

2.1. What do communities look like?
While the concept of a community may sound intuitive at first, there is no clear definition

of the word. The most agreed-upon definition of a community is rather vague: a group of

nodes that is better-connected to each other than to the rest of the network. The reason

that this definition is so vague, is that the exact meaning of ‘community’ may differ per net-

work and application. For example, if you consider a social network where the communities

represent groups of friends, then you expect nearly all people in the same friend group to

be connected by a link. In contrast, in the example of Wikipedia pages you wouldn’t expect

every page to link to every other page of that subject. Because of this, there are many dif-

ferent definitions and the most useful definition may differ based on the context.

A community resembles a clique. The ‘ideal’ image of a community is a clique: a

group of nodes where each node has an edge to each other node in the group. Many initial

attempts at defining what a community is, have done so by generalizing the definition of

a clique in some way. For example, a k-plex is a group of nodes so that for each node, the

amount of nodes that it is not connected to is at most k. In contrast, a k-core is a group of

nodes such that each node has at least k neighbors inside the k-core. Note that a clique of

size n forms a 0-plex and a (n−1)-core. An even looser definition of a community is a strong

community: a group C ⊆ N such that for each node i ∈ C a majority of the neighbors of i

are in C. The above definitions are attempts at describing what a communitymust look like.

Given a network and a group of nodes C, these allow to answer the question “Is C a com-

munity?” according to these definitions. However, in many networks, such as the Wikipedia

network, there exist natural groupings that do not fit any of these criteria. Because of this,

the focus moved away from hard definitions of what communities are, towards measures

that quantify how much a group of nodes is like a community.

There are relatively few connections between communities. Many of the first at-

tempts at detection communities in networks simply divided the network nodes into groups

such that the number of edges between these groups is minimized. The cutsize of a set of

nodes C ⊂ N is defined as the number of edges connecting C to the remainderN \ C. That
is,

Cut(C) = `(C,N \ C). (2.1.1)

However, this criteria does not take into account the sizes of the sets C andN \ C. Thus,

it may be that an algorithm minimizing the cutsize, will simply lead to an C consisting of a

single node. For example, suppose we have two 1-plexes each of size k and suppose that

each node is also connected to one node of the other group. Then the natural division into

the two 1-plexes would result in a cutsize of k, while isolating a single node leads to a cut-

size of k − 1, as shown in Figure 2.1.1. The problem with this measure, is that we do not

26 NETWORKS GOES TO SCHOOL

Figure 2.1.1. Two possible cuts for a network consisting of two 1-plexes of size 7 each, where

each node has one neighbor in the other 1-plex. The cutsize is minimized by isolating a single

node, as shown on the left, while the ratio cut is minimized by spliting the network into the two

1-plexes, as shown on the right.

take into account the sizes of the sets C andN \ C. Since |C| = 1 and |N \ C| = 2k − 1, the

maximum number of possible edges is |C| · |N \ C| = 2k − 1. The ratio cut corrects for this

by dividing the cutsize by the number of possible edges

RatioCut(C) =
`(C,N \ C)

|C| · |N \ C| . (2.1.2)

In the above example, the natural division into the two 1-plexes has a ratio cut of k
k·k = 1

k
,

which is indeed lower than the value (k − 1)/(2k − 1) corresponding to isolating a single

node.

A community contains many edges. Intuitively, you expect a network to have many

edges inside communities and few edges between communities. The simplest measure

of how well-connected a group C ⊆ N of nodes is, is simply the number of edges `(C)

between them. However, this does not take into account the number of edges that are ab-

sent in this group, or the number of edges that connect this group to the remainder of the

network. The maximal number of edges inside a group of size |C| is
(|C|

2

)
= |C| · (|C| − 1)/2,

since each node can connect to the |C| − 1 others and this would result in counting each

edge twice. The density of a community C is simply the fraction of pairs that are connected

by an edge. It is given by

Density(C) =
`(C)(|C|

2

) . (2.1.3)

You would expect communities to have a higher density than the rest of the network. Thus,

we need to compare the density of the group to that of the graph as a whole. That is, we

expect communities to have a density that is higher than Density(N).

27NETWORKS GOES TO SCHOOL

Distances inside communities are short. Suppose you are on a particular Wikipedia

page and you want to visit another Wikipedia page, but are too lazy to use your keyboard

to search for this page. In this case, you might just click on links to other pages until you

reach the desired page. It seems reasonable that a path to the desired page is shorter if

it is in the same category as the page you are currently on. Let us denote by Dist(i, j) the

distance between two nodes, i.e., the number of edges in the shortest path. If there is no

path between i and j, then the distance is infinite. If S is a connected subnetwork (that is,

each node can be reached from each other node), then the eccentricity of i in S is given by

Ecc(i, S) = max
j∈S

Dist(i, j). (2.1.4)

Similarly to the definitions of the diameter and radius of a circle, the diameter is the max-

imum eccentricity, while the radius is the minimum eccentricity of S. That is,

Diameter(S) = max
i∈S

Ecc(i, S), Radius(S) = min
i∈S

Ecc(i, S). (2.1.5)

Communities generally tend to have a low diameter and a low radius, compared to the ra-

dius and diameter of the whole graph. In Exercises 3, 4, and 6 in Chapter 4 you can practise

with these new concepts and compute them in two concrete examples of networks.

Communities are ‘hard to escape’. A different but related characterization of com-

munities is that edges between nodes of different communities often form bottlenecks.

Consider, for example, a city divided by a river. While there may be many roads on either

sides, there may only be a few bridges connecting the sides. Thus, if you want to move

from a place on one side of the river to the other, you will have to pass over one of the few

bridges. A way to quantify this, is to compute the shortest path for each pair of nodes and

count for each edge the amount of shortest paths it belongs to. For two nodes i, j ∈ N that

are connected by an edge, we define the bottleneck-ness of this edge by

Bottleneck(ij) = |{(s, t) : the edge {i, j} is on a shortest path from s to t}|. (2.1.6)

Edges inside communities are expected to have low bottleneck-ness, as there are many al-

ternative routes through the well-connected communities, while edges between communit-

ies tend to have larger bottleneck-ness. In Exercise 9 you can practise with computing the

bottleneck-ness in a concrete example of a network.

2.2. Finding communities in networks
In the previous section, we have described what we expect communities to look like. Each

of these different ideas about what a community is, can be turned into an algorithm for de-

tecting communities in networks.

28 NETWORKS GOES TO SCHOOL

For simplicity, we will assume that each node is part of exactly one community. Therefore,

we will look at algorithms that find a partition of the nodes into communities. There also

exist algorithms that detect overlapping communities, or that simply search for the com-

munity around a given node, but we will not discuss these variants of community detection

in this masterclass.

2.2.1. Detecting communities with small radius
One of the simplest community detection methods is k-center and it is based on the notion

that communities should have a small radius. Given a network and a number k (the number

of communities we want to detect), we randomly designate k nodes as ‘community centers’.

Then, for each of the nodes that is not a center, we assign it to the community correspond-

ing to the nearest center. After this, we update the center of each community to the node

that has the lowest eccentricity of the community. Such nodes are relatively central be-

cause they have the least maximum distance from all other nodes in the community. Note

that for each of the nodes that is not a center the nearest center might change after this

step. We repeat these last two steps (assigning each node to the nearest center and updat-

ing the center) as long as the partition keeps changing. See Exercise 8 in Chapter 4 for an

implementation of this algorithm.

2.2.2. Divisive community detection
Divisive community detection is based on the notion that there are relatively few connec-

tions between communities, while there are plenty of edges inside communities. Thus, if

we eliminate some of the ‘less important’ edges, we are likely to disconnect communities

from each other, while the communities will likely remain connected.

This does, of course, require us to come up with a way to decide which edges are more im-

portant than others. An example of a suitable measure for this, is the bottleneck-ness that

we discussed earlier in (2.1.6): an edge that is on many shortest paths is likely to form a

‘bridge’ between two communities. After deleting the edge with the highest bottleneck-

ness, we can re-compute the bottleneck-ness and delete a new edge. We can keep doing

this until we reach some stopping criteria. For example, until we have deleted a predeter-

mined number of edges or until we are left with a certain number of communities.

Another measure that can be used for divisive community detection is the number of com-

mon neighbors that two nodes have. If two nodes are connected to many common neigh-

bors, then they are more likely to be part of the same community. Thus, we could at each

point eliminate the edge that connects two nodes that have the least number of common

neighbors.

2.2.3. Maximizing partition quality
The previous algorithms provide procedures to find reasonable partitions of network nodes

into communities. However, many of these algorithms involve some randomness, so if we

29NETWORKS GOES TO SCHOOL

would run them again, we might find different partitions into communities. The methods

themselves do not offer a way of quantifying which of these possible partitions is best.

Most community detection methods that are currently popular define a quality function that

quantifies how well a given partition into communities fits the given network. This way, if

we have two algorithms that result in different partitions, we simply select the partition

that has the highest quality (according to this measure) and consider this as the best guess

of what the community structure of the network is. Furthermore, instead of using any of

the previously described procedures, we might as well use an algorithm that optimizes the

quality function directly.

While many of the measures that we discussed in Section 2.1 quantified how ‘community-

like’ a group of nodes S is with respect to the network, the quality functions that we discuss

in this section quantify how well the entire partition into communities fits the network as a

whole. Many of these community measures can easily be turned into quality functions by

simply summing over the communities. For example, we could simply take the sum of the

cut sizes

CutQuality(C) =

|C|∑
i=1

Cut(Ci). (2.2.1)

If we were to search for the partition that minimizes this, without constraining the number

of clusters, the optimal partition would always consist of a single community. Conversely, if

we would minimize the sum of the community radii, i.e.,

RadiusQuality(C) =

|C|∑
i=1

Radius(Ci), (2.2.2)

then the optimum would always be to assign each node to a community of size 1, since

every node has distance i to itself. The easiest way to resolve this, is to restrict the num-

ber of communities to some fixed number k and to optimize the quality over all partitions

consisting of k communities.

Modularity. However, not all quality functions require us to restrict the number of com-

munities in order to avoid ‘obvious’ optima. Modularity is one example of such quality func-

tions and it is currently one of the most widely-used community detection methods.

Modularity measures the number of edges inside the communities and compares it to the

number of edges we would expect inside communities if they were randomly placed ac-

cording to some model without community structure. The idea behind this, is that if there

are much more edges inside the communities than we would expect according to this model

without communities, then the found communities must be significant in some way. There

are different ways to do this random placing, leading to different versions of modularity.

The easiest way to do this is to randomly place the |E| edges among the
(|N|

2

)
possible node

pairs. This way, each node pair has a probability |E|/
(|N|

2

)
= Density(N) of having an edge

30 NETWORKS GOES TO SCHOOL

after shuffling, so that the expected number of edges inside a community of size s is given

by
(
s
2

)
· Density(N). We refer to the corresponding modularity as Simple Modularity and it is

given by

SimpleModularity(C) =
1

|E|

 |C|∑
i=1

`(Ci)−

(
|Ci|
2

)
· Density(N)

 . (2.2.3)

Note that if we place all nodes together into one community, the resulting Simple Modular-

ity is zero since `(C1) = |E| = Density(N) ·
(|C1|

2

)
. Similarly, if we place each node i into

a community of size one (that is, C(i) = {i}), the Simple Modularity will also be zero since
`({i}) = 0 =

(
1
2

)
. The optimal modularity value, will thus correspond to some partition C

with 1 < |C| < |N |. This shows why modularity does not require us to fix the number of
communities.

Taking degrees into account. Another model for the random placement of edges also

takes the degrees of the nodes into account. Nodes with higher degrees are more likely to

be connected to each other, simply because they have more edges around them. Because

of this, algorithms that maximize Simple Modularity have the tendency to group together

nodes of high degree. There are many ways to randomly place the edges in a way that the

degree of each node in this random graph will roughly correspond to the degree that this

node has in the original network. Most of these do (roughly) lead to the same version of

modularity, which is why we will explain the simplest version here. Between two nodes i

and j, with degrees d(i) and d(j) in the original graph, we place an edge with probability
d(i)d(j)
2|E| . This way, the expected degree of node i in this random network is∑

j∈N\{i}

d(i)d(j)

2|E| = d(i)
2|E| − d(i)

2|E| ≈ d(i),

as long as |E| is large compared to d(i). For a group of nodes S, the expected number of

edges inside S is given by

1

2

∑
i∈S

∑
j∈S\{i}

d(i)d(j)

2|E| =
1

4|E|

(
d(S)2 −

∑
i∈S

d(i)2
)
.

The term
∑

i∈S d(i)2 does not depend on the partition into communities, so it can be ig-

nored. This leads to the following version of modularity

StandardModularity(C) =
1

|E|

 |C|∑
i=1

`(Ci)−
d(Ci)

2

4|E|

 . (2.2.4)

We refer to this version of modularity as Standard Modularity, as it is the most widely-used

form of modularity. Maximizing this quantity may even be the most widely-used community

detection algorithm.

31NETWORKS GOES TO SCHOOL

Modularity does have one infamous defect, known as the resolution limit. We illustrate

this defect in Exercises 10 and 11 using the ring of cliques network. These two exercises

demonstrate that any modularity-maximizing algorithm will merge together neighboring

cliques if the ring is large enough, which is clearly undesirable. This problem is often re-

ferred to as the resolution limit of modularity. The problem is that when the number of

nodes in the network is much higher than the average degree, the number of edges be-

comes so small that the density becomes negligible. Then, regardless of the way you ran-

domly place the edges, the expected amount of edges between communities becomes

negligible, so that any edge between communities will already result in ‘significantly more

edges than expected’.

2.3. Models of communities
In this section we discuss several models of what graphs with community structure look

like. Let C(i) denote the community that node i ∈ N belongs to.

2.3.1. Planted Partition Model
The simplest way to model community structure is to simply assume that nodes of the

same community have a higher probability of being connected than nodes of different com-

munities. That is, we say that the probability that two nodes are connected by an edge

equals pin if they are of the same community, and pout < pin otherwise. That is,

P({i, j} ∈ E) =

pin if C(i) = C(j),

pout if C(i) 6= C(j).

This model is called the Planted Partition Model and it is often abbreviated as PPM. An ex-

ample of a small PPM network is shown in Figure 2.3.1.

2.3.2. PPM with different community sizes
In the above, we chose each community to have the same size. However, if there are com-

munities with vastly different sizes while we keep the values pin and pout constant, then

this will lead to nodes that are part of large communities having very high degrees. For

example, suppose pout = p and pin = 10p, and consider a PPM with 11 communities, 10

of size s and one of size 10s. The expected degree of a node in a small community will be

(10 + 9)sp + 10(s − 1)p ≈ 29sp (try to prove this formula, the first term corresponds to the

average number of neighbors outside the small community, the second term to the average

number of neighbors inside the small community), while a node in the large community will

have degree 10sp + (10s − 1) · 10p ≈ 110sp (try to prove this formula using a similar reas-

oning as above), thus the degrees in the large community are much larger than the degrees

32 NETWORKS GOES TO SCHOOL

0

1

2

3

4
5

6

7

8

9

10

11

12

13

14
15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

Figure 2.3.1. An example of a PPM consisting of three communities of size 10 each. We take the

probabilities pin =
1
2
and pout =

1
40
.

in the small communities. What’s perhaps even more problematic, is that a node in a small

community is expected to have almost twice as many neighbors outside its community as

inside while a node in the large community has almost 10 times more neighbors inside the

community than outside. For this reason, we need to modify this model if we want to allow

for different community sizes.

To make sure that the expected degree does not depend too much on the size of the com-

munity, we change the probability that two nodes i and j inside a community of size s are

connected to

pin(s) =
din

s− 1
,

so that each node is connected to din community members in expectation. The expected

number of neighbors outside the community is given by

(|N | − s)pout,

which unfortunately does depend on the size of the community. However, this is barely no-

ticeable as long as s is relatively small compared to the total number of nodes |N |. Usually
one chooses

pout =
dout
|N |

so that each node is expected to be connected to approximately dout nodes outside the

community. We call this model the Sparse PPM. The difference between PPM and Sparse

33NETWORKS GOES TO SCHOOL

Figure 2.3.2. Comparison of PPM (left) and Sparse PPM (right) for the case where the

communities have different sizes. The parameters of the PPM follow the setup as described in

Section 2.3.2, for s = 5 and p = 1
10
, while the din and dout of the Sparse PPM are chosen to

match the PPM as much as possible.

PPM is demonstrated in Figure 2.3.2, where we have one community of size 50 and 10 com-

munities of size 5. For the PPM, we see that the nodes in the small communities have much

smaller degrees than vertices in the large community, and some of the small communities

don’t even have any edges inside them. For the Sparse PPM, in contrast, we see that the

small communities are much better connected.

34 NETWORKS GOES TO SCHOOL

Figure 2.3.3. Mathematical rulers in Game of Thrones! By Clara Stegehuis.

On the Network Pages

For further reading on networks and communities have a look at:

(1) Mathematical rulers in Game of Thrones by Clara Stegehuis,

networkpages.nl/mathematical-rulers-in-game-of-thrones/.

(2) Synchronization in the body clock by Janusz Meylahn,

networkpages.nl/synchronization-in-the-body-clock//.

(3) The Network Science of Echo Chambers and Why It Matters by Maurik Engel-

bert van Bevervoorde, Maurits Flos, Ana-Maria Olteniceanu, and Riccardo

Torlaini

networkpages.nl/the-network-science-of-echo-chambers-and-why-it-

matters//.

(4) How the popular become even more popular by Remco van der Hofstad,

networkpages.nl/how-the-popular-become-even-more-popular/.

35NETWORKS GOES TO SCHOOL

Chapter 3

Road traffic analysis - Route

selection in a network

A road traffic network consists of a collection of roads that connect various cities. The users

of this network want to travel from their current location, called the origin, to some desired

destination. These users travel in a vehicle and will therefore be called the drivers in the

network.

Companies that provide route guidance to the drivers in a network need to keep the poten-

tial wishes of these drivers into account. For example, instead of simply using the fastest

route, a driver who has ample time and who is concerned about the fuel consumption of his

car may prefer the shortest route. Moreover, route guidance companies also need to make

sure that the algorithms they use to compute these routes are efficient, i.e. the computation

can be done in a reasonable amount of time. A driver is not likely to use a route planner if

it takes a lot of time for this planner to compute the best route for her. A lot of studies have

tried and succeeded in improving Dijkstra’s algorithm in either of these aspects:

(1) speeding up Dijkstra’s algorithm and

(2) extending Dijkstra’s algorithm beyond the simple shortest path (i.e. in distance) set-

ting.

3.1. Efficiency

In Section 1.3, Dijkstra’s algorithm is used to compute a (shortest) route in the network of

Figure 1.3.2, also given below.

Even though this network contains only seven nodes, execution of the algorithm already

takes six steps, each of them consisting of multiple actions. Therefore, one can imagine

36 NETWORKS GOES TO SCHOOL

1

2

3

4

5

6

7

4

7

2

5

1

5

3

1

3

8

A network with seven locations as in Figure 1.3.2

that this algorithm might be less useful in real-life vehicle networks, which are of very large

scale. Planners use several speed-up techniques to make sure drivers do not have to wait

long before learning their optimal route, the shortest path from the origin to the destination,

in such large networks.

Before analyzing two of these speed-up techniques, it is crucial to understand what makes

Dijkstra’s algorithm limited in large networks. Recall that at the end of each iteration step,

we mark the node with the lowest distance in the row that corresponds to the step as per-

manent. This generally means that nodes that lie closer to the origin will be marked per-

manent before nodes that lie further away from the origin. Notably, in this procedure, we do

not take the location of the destination into account. It is even possible that we may mark

some nodes which lie further away from the destination than the origin itself. By explicitly

working with the distance of nodes to the destination as well, the two considered speed-up

techniques are able to be more efficient than Dijkstra’s algorithm.

3.1.1. Bi-directional Dijkstra
In the bi-directional Dijkstra algorithm, we perform the same steps as in Dijkstra’s algorithm:

starting with the origin as permanent node, iteratively update the distances for the neigh-

bors of the permanent node, each time picking the node with the updated shortest distance

as new permanent node. However, at the same time, we also start Dijkstra’s algorithm with

the destination as first permanent node. Thus, Step 1 of the bi-directional Dijkstra algorithm

executes Step 1 of Dijkstra’s algorithm twice: once with the origin as starting point, once

with the destination as starting point. In terms of bookkeeping, in the example given above,

this gives us the first row of Table 3.2.1 and the first row of Table 3.1.2. Then, in each step

of the algorithm, we execute Dijkstra’s algorithm twice, each time creating a new row in

both tables. Thus, besides updating around the origin, we now update around the destina-

tion as well.

37NETWORKS GOES TO SCHOOL

nodes 1 2 3 4 5 6 7

Step 1 - (4, 1)∗ (7, 1) No edge No edge No edge No edge

Step 2 - - (6, 2)∗ (9, 2) No edge No edge No edge

Step 3 - - - (7, 3)∗ (11, 3) No edge No edge

Step 4 - - - - (10, 4) (8, 4)∗ No edge

Step 5 - - - - (10, 4)∗ - (16, 6)
Step 6 - - - - - - (13, 5)∗

Table 3.1.1. Dijkstra's shortest route algorithm for the network in Figure 1.3.2.

nodes 1 2 3 4 5 6 7

Step 1 No edge No edge No edge No edge (3, 7)∗ (8, 7) -

Step 2 No edge No edge (8, 5) (6, 5)∗ - (8, 7) -

Step 3 No edge (11, 4) (7, 4) - - (7, 4)∗ -

Step 4 No edge (11, 4) (7, 4)∗ - - - -

Step 5 (14, 3) (9, 3)∗ - - - - -

Step 6 (13, 2)∗ - - - - - -

Table 3.1.2. Backward Dijkstra's shortest route algorithm for the network in Figure 1.3.2.

You may be right to wonder how executing the algorithm twice makes the procedure more

efficient. First, let us remark that computers are able to do computations in parallel, such

that they can simultaneously compute a new row for both tables, without much additional

cost as compared to the computation of one new row. Second, it is very important to realize

that by comparing the numbers in the two generated tables after each step, we are able to

determine the shortest path at an earlier stage, and therefore need lesser steps than the

original Dijkstra algorithm.

If we would, for example, consider Tables 3.2.1 and 3.1.2, we see that after Step 2, by

combining the entries for node 4 and node 3, we respectively find paths of lengths 15 and

14. Then, after Step 3, we may again combine table entries for the different nodes in the

network, and find, via node 3, an even shorter path of length 13. Remarkably, it turns out

that, as the sum of the distance entries of the new permanent nodes exceeds 13 (i.e., 7 for

node 4 in Table 3.2.1 and 7 for node 6 in Table 3.1.2), there cannot be a path that is shorter

than the current shortest path.

3.1.2. A-star algorithm
Intuitively, the A-star algorithm makes sure that the updating of the nodes does not happen

solely around the origin, but that the nodes whose values are updated are mostly located in

the area between the origin and the destination. To make this happen, the algorithm does

38 NETWORKS GOES TO SCHOOL

not only work with the distances from the origin to the nodes, but also with lower bounds

for remaining distances, i.e., the distances between the nodes and the destination. These

lower bounds may e.g. be the geographical distances, which are the lengths of the direct

lines from the nodes to the destination.

nodes 1 2 3 4 5 6 7

Step 1 No edge (5, 4) (1, 4)∗ - (3, 4) (1, 4) No edge

Step 2 (8, 3) (3, 3) - - (3, 4) (1, 4)∗ No edge

Step 3 (8, 3) (3, 3) - - (3, 4)∗ - (9, 6)
Step 4 (8, 3) (3, 3)∗ - - - - (6, 5)
Step 5 (7, 2) - - - - - (6, 5)∗

Table 3.1.3. Dijkstra's algorithm for the network in Figure 1.3.2 for a path from 4 to 7.

nodes 1 2 3 4 5 6 7

lower bound 9 8 7 6 4 2 0

Step 1 No edge (13, 5, 4) (8, 1, 4) - (7, 3, 4) (3, 1, 4)∗ No edge

Step 2 No edge (13, 5, 4) (8, 1, 4) - (7, 3, 4)∗ - (9, 9, 6)
Step 3 No edge (13, 5, 4) (8, 1, 4) - - - (6, 6, 5)∗

Table 3.1.4. A-star algorithm for the network in Figure 1.3.2 for a path from 4 to 7.

We demonstrate the A-star algorithm with an example. Say that we want to travel from

node 4 to node 7 in the network of Figure 1.3.2. Then, Table 3.1.3 corresponds to Dijkstra’s

procedure. As can be seen, the algorithm is inefficient, as it also updates nodes that lie on

the other side of the origin as the destination, such as nodes 1 and 2. If we would, how-

ever, have lower bounds on the distances from the nodes to the destinations, as given in

Table 3.1.4, the efficient A-star algorithm may be executed. This algorithm, whose proced-

ure is shown in the same table, is very similar to Dijkstra’s algorithm, in the sense that it is

an iterative procedure that marks nodes and updates values of its neighbors. However, for

the bookkeeping, different values are used. Specifically, besides the shortest distance to

the node and the neighbor via which we should then travel, we store an estimate of the total

distance on a path containing this node: the sum of the shortest distance to this node and

the known lower bound on the remaining distance to travel. For example, entry (13, 5, 4)

in Step 1 for node 2 arises because the current shortest distance to node 2 is reached via

node 4 and has value 5, and adding the lower bound to this distance yields that value 13.

Now, in each iteration, the node that is permanently marked is the node with lowest first

entry. Again, the algorithm terminates if the marked node is the destination, which already

happens after three steps.

39NETWORKS GOES TO SCHOOL

3.2. Accuracy

Using (a speed-up version of) Dijkstra’s algorithm, it is not difficult to determine the length

of the shortest route that connects the origin and the destination, even in the large scale.

The length of the individual road segments that make up the route are fixed, and the total

travel distance is simply the sum of these segments. We can therefore say that the distance

between origin and destination is a deterministic quantity. The travel time between origin

and destination, however, is certainly not deterministic. For example, you may get stuck in

a traffic jam as a result of an accident which will drastically increase your travel time. One

could also think of smaller hindrances, such as having to wait for a bridge that is opening

or repeatedly having to stop for red lights. Some routes will be more likely to cause delays

than others. These routes are said to bear a higher risk related to the travel time. Therefore,

in contrast to travel distances, travel times are stochastic.

Since travel times are stochastic, it is important to realise that the fastest route suggested

by your navigation system is only the fastest route in expectation. It may be the case that

this route consists of roads that are likely to cause delays. As a result, the actual travel time

of this route may be very uncertain. It is because of this uncertainty that the fastest route

is not always the most desirable route. We inspect if we can still use Dijkstra’s algorithm to

find routes that minimise other characteristics.

3.2.1. Reliable routes
Consider a driver that is not interested in finding the shortest route, but who wants to find

the route that minimises the probability of getting stuck in a traffic jam. Note that this route

may be a big detour from the shortest route and is therefore unlikely to be the fastest route.

We call this route the most reliable route. The following is based on Example 6.3-2 in the

book “Operations Research, An Introduction” (9th Edition) by Hamdy A. Taha.

In Figure 3.2.1 we assigned to each edge {i, j} of Figure 1.3.2 a probability pij of not run-
ning into a traffic jam on the road between city i and j. For example, p12 = 0.2 and p35 =

0.5. Note that there is no direct edge between city 1 and 7, but the route 1 → 2 → 4 → 6 →
7 is a possible route between those cities and the probability of not running into a traffic jam

on this route is

p17 = p12 × p24 × p46 × p67 = 0.2× 0.8× 0.35× 0.7 ≈ 0.04.

Hence, if the driver chooses this route, there is a probability of not running into a traffic jam

of only 4%. This does not look very promising indeed! Perhaps we are able to find a route on

which it is less likely to get stuck in traffic?

This problem can be formulated as a shortest route model by using a logarithmic trans-

formation. This way, we can convert the product of probabilities into a sum of logarithms

40 NETWORKS GOES TO SCHOOL

1

2

3

4

5

6

7

0.2

0.9

0.6

0.8

0.9

0.5

0.4

0.35

0.45

0.7

Figure 3.2.1. Most reliable route network model

of probabilities. That is, the probability assigned to our previously suggested route is trans-

formed to

p17 = p12 × p24 × p46 × p67 =⇒ log p17 = log p12 + log p24 + log p46 + log p67.

If we are able to find a route that maximises log p17, this same route would also maximise

the actual probability p17 of not running into a traffic jam. This is due to the fact that the log-

arithm is a strictly increasing function. Note that Dijkstra’s algorithm is designed to find a

route that minimises a sum instead of maximising it. However, this problem can easily be

countered by minimising− log p17. In Figure 3.2.2 we have replaced each pij by− log pij .

We have now successfully converted our problem to the shortest route problem which we

looked at in Section 1.3, since the shortest route of the network in Figure 3.2.2 corresponds

to the most reliable route in the sense that this route has the highest probability of not run-

ning into a traffic jam.

To find the most reliable route, we thus use the weights in Figure 3.2.2 and act as if they are

distances. Making a table for the weights using Dijkstra’s algorithm, in the same way as we

did in Section 1.3, leads to Table 3.2.1.

nodes 2 3 4 5 6 7

Step 1 (1.609, 1) (0.105, 1)∗ No edge No edge No edge No edge

Step 2 (0.616, 3) - (0.210, 3)∗ (0.798, 3) No edge No edge

Step 3 (0.433, 4)∗ - - (0.798, 3) (1.260, 4) No edge

Step 4 - - - (0.798, 3)∗ (1.260, 4) No edge

Step 5 - - - - (1.260, 4)∗ (1.597, 5)
Step 6 - - - - - (1.597, 5)∗

Table 3.2.1. Dijkstra's shortest route algorithm for the network in Figure 3.2.2.

41NETWORKS GOES TO SCHOOL

1

2

3

4

5

6

7

1.609

0.105

0.511

0.223

0.105

0.693

0.916

1.050

0.799

0.357

Figure 3.2.2. Most reliable route representation as a shortest route model

From this table, we see that the most reliable route from city 1 to city 7 is the route 1 →
3 → 5 → 7. As a side note, if we would like to go from city 1 to city 2 instead, the most

reliable route is not the direct route 1 → 2, but by following the records in the table, the

most reliable route in this case would be 1 → 3 → 4 → 2. When looking at Figure 3.2.1, this

seems right: the direct probability 0.2 of not running into a traffic jam is indeed smaller than

the probability 0.9× 0.5× 0.45 = 0.2025 of the route found by Dijkstra’s algorithm!

Note that we could have used the bi-directional Dijkstra algorithm here as well, but that it

would not have been possible to use A-star, as we do not have lower bound on the logar-

ithms of the probabilities in the network.

3.2.2. Refinements using probability distributions
So far, we have seen that we can use Dijkstra’s algorithm in order to both find the shortest

and the most reliable route. However, these routes may both be undesirable for a user of

the road traffic network. The shortest route may be a very slow route due to congestion,

whereas the most reliable route may be a big detour from the destination, resulting in a long

travel time.

A much more realistic objective that a driver may have is that they want to arrive at their

destination ‘on time’. For example, consider the situation where a driver has a meeting in

one hour and they want to maximise the probability of not being late. Perhaps the most

reliable route is the best choice, as the low uncertainty ensures that the driver will arrive

on time. Another extreme is the situation in which a high risk route, meaning a short route

which is likely to be congested, is the only route which gives a chance of arriving on time. Of

course, in this case the high risk route would be the best route. But how do we determine

the best route mathematically?

Instead of looking at the length or the reliability of a road between two cities, a more rel-

evant quantity would be the travel time between these two cities. We have already argued

42 NETWORKS GOES TO SCHOOL

before that the travel time is a stochastic quantity. This is where probability distributions

come in. Routes that are expected to have a short travel time will have a probability distri-

bution that is centred around a relatively low value. Unreliable routes, i.e. routes on which

there is high uncertainty over the travel time, will have a probability distribution that is more

spread.

Let’s go back to the situation in Figure 3.2.1. The edge between city 1 and 3 indicates that

there is a low probability of getting stuck in a traffic jam on this road. Therefore, the travel

time to move between city 1 and 3 will be fairly certain and its probability distribution will

be relatively concentrated. In contrast, the road between city 1 and 2 is likely to be con-

gested making the travel time between these two cities rather uncertain. Hence, this prob-

ability distribution will be more spread, or equivalently, the travel time will have a higher

variance.

For simplicity, we will assume that the travel times are distributed according to a normal

distribution. An objection to this assumption is that the normal distribution also assigns

positive probability to negative values, which does not make sense in our application. How-

ever, this distribution is intuitive to work with and it allows us to do some explicit computa-

tions without the use of a computer.

In Figure 3.2.3 we once again consider the same road traffic network, but we are now con-

cerned with the random travel times between the cities instead of the probability of getting

stuck in a traffic jam. We let the random variable Tij denote the travel time between city i

and j and we write Tij ∼ N (µij , σ
2
ij) to indicate that Tij is normally distributed with mean

µij and variance σ
2
ij . Possible densities for the travel time distribution between city 1 and

3 and city 1 and 2 that would agree with the previous discussion are given in Figure 3.2.4.

What is interesting to note here is that even though 13 = µ12 < µ13 = 15, inspection of

these densities seems to imply that

P(T12 ≥ 20) > P(T13 ≥ 20). (3.2.1)

It is remarkable that the road between city 1 and 2 has a lower mean travel time compared

to the route between city 1 and 3, but at the same time this route is more likely to take

more than 20 minutes to traverse. This is of course caused by the higher variance of T12.

This example demonstrates that the expected fastest route, which is the route that is most

likely to be suggested by a navigation system, is not necessarily the best route for drivers

that want to maximise the probability of arriving at their destination on time. If we want to

determine the best route for these drivers, it is crucial that we know the probability distribu-

tion of the travel times.

43NETWORKS GOES TO SCHOOL

1

2

3

4

5

6

7

T12

T13

T23

T24

T34

T35

T45

T46

T57

T67

Figure 3.2.3. Road traffic model with stochastic travel times

Figure 3.2.4. The density of T13 ∼ N (15, 4) (left) and T12 ∼ N (12, 16) (right).

44 NETWORKS GOES TO SCHOOL

3.3. Concluding remarks
We now know that the road traffic network in Figure 3.2.1 does not tell the whole story. In-

stead of only knowing the expected travel times and the reliability of a road network, know-

ing the actual probability distribution of the travel times would provide us with much more

information. This in turn allows us to answer questions that are of greater relevance for

some drivers.

The model we discussed in which the travel times are assumed to be independent and nor-

mally distributed could already be fruitful in practice in order to find routes that are both

fast and reliable. However, there is room for improvement as the assumptions we made are

not very realistic.

For one, we have already argued that travel times cannot be normally distributed. This is

due to the normal distribution assigning positive probability to negative values. In other

words, if travel times are normally distributed, there is a positive probability of having a

negative travel time. Nonsense! Therefore, it is better to assume that the travel times fol-

low some non-negative distribution such as the log-normal distribution or the gamma dis-

tribution. Even worse, it can happen that none of the well-known probability distributions

provide a good explanation of the actual travel times. In this case we would have to resort

to so-called non-parametric methods. Another assumption we made is that the travel times

are independent across roads. This means that any information regarding the travel time of

one road has no impact on the travel time of any other road. However, one could argue that

the level of congestion of a road is positively correlated with the level of congestion of the

adjacent roads. This violates the assumption, since the level of congestion clearly has an

impact on the travel times. These issues greatly complicate the analysis of the network.

45NETWORKS GOES TO SCHOOL

Figure 3.3.1. Reducing travel times can be achieved in multiple ways, finding the optimal route

is one of them as we discussed. But there is more! You can also monitor traffic, that is what

traffic lights do for example. Have a look at the article of Rik Timmerman below.

On the Network Pages

For more information on algorithms, networks and road traffic analysis have a look

at:

(1) Finding the shortest route to your holiday destination: Dijkstra’s algorithm by

Bart Jansen,

networkpages.nl/finding-the-shortest-route-to-your-holiday-destination-iv-

dijkstra-algorithm/.

(2) How to plan Valentine’s day using a matching algorithm by Bart Jansen,

networkpages.nl/how-to-plan-valentines-day-using-a-matching-algorithm/.

(3) Traffic Congestion: Braess’ Paradox by Peter Kleer,

networkpages.nl/traffic-congestion-iv-braess-paradox/.

(4) Traffic lights no longer needed: back to the future by Rik Timmerman,

networkpages.nl/traffic-lights-no-longer-needed-back-to-the-future/.

46 NETWORKS GOES TO SCHOOL

Chapter 4

Exercises

Exercises on graph theory

EXERCISE 1. Show that in a graphG = (V,E) the maximum number of edges is equal to(|V |
2

)
= |V |·(|V |−1)

2
.

EXERCISE 2. Show that you can construct in total 2

(
|V |
2

)
graphs with |V | nodes.

EXERCISE 3. Look at the karate network in Figure 2.0.1. Answer the following questions.

• What are the degrees of points 0, 1, 8, and 33?

• What are the eccentricities (see 2.1.4) of points 0, 1, 8, 15, 16, and 33? For these

computations consider S either as the pink or the green community given in the Fig-

ure.

• What are the diameter (see (2.1.5)) and the radius (see (2.1.5)) of the two subnet-

works? Can you give an intuitive explanation of the values you get?

EXERCISE 4. Look at the FIFA World Cup from 2022 in Figure 2.0.2. Answer the following

questions.

• How would you divide the network in communities in order to obtain the lowest cut-

size (see (2.1.1))?

• How would you divide the network in communities in order to obtain the lowest Rati-

oCut value between communities (see (2.1.2))?

Exercises on networks and communities
EXERCISE 5. What is the size of the largest clique of the FIFA2022 network of Figure 2.0.2?

47NETWORKS GOES TO SCHOOL

Figure 4.0.1. The ring-of-cliques network for k = 4 and s = 5.

EXERCISE 6. In the karate network, the conflict that led to the split (called ‘true split’) was

a conflict between nodes 0 and 33 (the instructor and the administrator). Thus, we want

to find a split into two communities such that the instructor and the administrator are in

different communities. What is the cutsize, see (2.1.1), of the ‘true split’? Can you find such

a split that has a lower cutsize than the ‘true split’?

EXERCISE 7. The diameter of a circle is always twice the radius. Does this also hold for

graphs? Experiment with some simple graphs. You may assume that the graph is connec-

ted.

EXERCISE 8. Apply the k-center algorithm to the Karate network from Figure 2.0.1. In

the first iteration, you can assign nodes 0 and 33 (the instructor and administrator) as the

centers. In case you encounter ties (that is, a node that is at equal distance of both centers,

or multiple nodes with equal eccentricity), you can resolve them by choosing the node with

the lowest index.

EXERCISE 9. Consider a ‘line’ network of an even number of nodes. That is, nodes are

labeled 1, 2, . . . , n (where n is even) and nodes are connected if their labels differ by exactly

one. Which edge has the highest bottleneck-ness of this network?

In the following exercises, we consider a network with k equally-sized communities C1, . . . , Ck

(each of size s > 2). Each of the communities forms a clique while each two neighboring

communities (i.e., community Cr and Cr+1 for r = 1, . . . , k − 1 or Ck and C1) are connec-

ted by a single edge. We refer to this network as the ring-of-cliques network. Figure 4.0.1

shows the corresponding network for k = 4 and s = 5.

EXERCISE 10. What is the Simple Modularity of this ring of cliques?

48 NETWORKS GOES TO SCHOOL

EXERCISE 11. Now consider the partition that is obtained by when combining clique C1

and C2 into one community of size 2s. Show that for k sufficiently large, the simple modu-

larity of this new partition is actually higher than that of the original, more sensible partition.

EXERCISE 12. For a PPM consisting of k communities each of size s, what is the expected

degree of a node? And what is the expected density of the network as a whole?

EXERCISE 13. For a PPM consisting of k communities each of size s, what is the expected

value of the Simple Modularity of the ‘true’ community structure?

EXERCISE 14. For a PPM consisting of k communities each of size s, what is the probabil-

ity that a given node i is not connected to any of its community members? What is the ex-

pected number of nodes in the network that are not connected to any of their community

members?

EXERCISE 15. What is the expected radius of a community consisting of s nodes?

EXERCISE 16. What is the expected cutsize between two communities? And what about

the ratio cut?

EXERCISE 17. We say that a node s is a common neighbor of i and j it is a neighbor of both

i and j. That is, whenever {i, s} ∈ L and {s, j} ∈ L. What is the expected number of com-

mon neighbors that two nodes have if they are in the same community? And what is the

expected number of common neighbors for two nodes that are not in the same community?

EXERCISE 18. Consider a PPM (not sparse) with pin = 1
2
with two communities with sizes

s1 and s2, where 2 ≤ s1 < s2. Which of the two communities has a higher expected number

of nodes that are not connected to the rest of the community?

Exercises on probability theory - Normal Distribution

EXERCISE 19. Verify the claim in (3.2.1). Recall that T12 ∼ N (12, 16) and T13 ∼ N (15, 4).

Use Table 4.0.4 on page 52.

EXERCISE 20. LetX and Y be continuous random variables in R. Show that

E[X + Y] = E[X] + E[Y].

You may use that
∫
R f(x, y)dy = f(x) and

∫
R f(x, y)dx = f(y).

49NETWORKS GOES TO SCHOOL

Exercises on road traffic analysis

Dijkstra's algorithm for reliable routes

1

2

3

4

5

6

7

0.8

0.3

0.9

0.5

0.85

0.95

0.7

0.6

0.8

0.9

Figure 4.0.2. Road traffic network for Exercise 4

EXERCISE 21. Figure 4.0.2 shows the possible routes to move from city 1 to city 7, and

the associated probabilities of not running into a traffic jam. Use Bi-directional Dijkstra’s

algorithm to find the most reliable route of this road traffic network. What is the probability

of not getting stuck in a traffic jam on the most reliable route?

Dijkstra's algorithm for travel times

1

2

3

4

5

6

7

T12

T13

T23

T24

T34

T35

T45

T46

T57

T67

Figure 4.0.3. Road traffic model with stochastic travel times

EXERCISE 22. (1) Assume that the travel time distributions of the road traffic network

50 NETWORKS GOES TO SCHOOL

in Figure 4.0.3 are known and are given in Table 4.0.1 below. Find the route between

city 1 and 7 that has the lowest expected travel time.

T12 T13 T23 T24 T34 T35 T45 T46 T57 T67

µ 12 10 2 7 4 4 3 10 19 5

σ2 1 9 1 9 4 1 1 16 1 4

Table 4.0.1. Tij denotes the travel time between city i and j in minutes and is normally

distributed with parameters µ and σ2.

(2) Suppose you have a job interview in 40 minutes. Find the probability that you arrive

on time if you take the route you found in part (1). What is this probability if you take

the route 1 → 3 → 5 → 7? What do you observe?

Hint

Recall that the travel times are independent across the different roads. You can

use that ifX ∼ N (µX , σ2
X) and Y ∼ N (µY , σ2

Y) are independent, it holds that

X + Y ∼ N (µX + µY , σ2
X + σ2

Y).

51NETWORKS GOES TO SCHOOL

52 NETWORKS GOES TO SCHOOL

Figure 4.0.4. Values of distribution function of normal distribution

53NETWORKS GOES TO SCHOOL

Chapter 5

Solutions to exercises

Graph theory

(1) Each possible edge in a graphG = (V,E) corresponds to a pair of nodes. In total we

have |V | nodes inG, which means we can form in total
(|V |

2

)
possible pairs of nodes,

where {i, j} is considered the same as {j, i}.
(2) We will reformulate the question and then we use Exercise 1. In a graphG there are

in total
(|V |

2

)
possible edges. In a specific graph some of these edges will be present

and some not. Hence the total number of graphs with |V | nodes is equivalent to the
number of sequences of length

(|V |
2

)
where each element is either a 0 (edge is not

present) or a 1 (edge is present). There are in total 2

(
|V |
2

)
such sequences.

(3) d(0) = 16, d(1) = 8, d(8) = 5, d(33) = 17. For the eccentricities we compute

Ecc(0,Pink) = 3, Ecc(1,Pink) = 4, Ecc(16,Pink) = 4, Ecc(8,Pink) = 4, Ecc(15,Green) =

3, and Ecc(33,Green) = 2. For the diameter and the radius of the two subnetworks

we have Diameter(Pink) = 4,Diameter(Green) = 3, and Radius(Pink) = 2, Radius(Green) =

2.

Networks and communities

(5) There are six cliques of size 4, corresponding to the group stage of the tournament.

(6) Yes, starting from the ‘true’ split, if we move node 8 to the community of the adminis-

trator, we get a cutsize of 10, which is the minimal cutsize for such splits.

(7) No, consider four nodes connected by a line. The diameter is three while the radius is

two. The diameter is always at most twice the radius.

(8) See Figure 5.0.1

54 NETWORKS GOES TO SCHOOL

(9) The edge between nodes n/2 and n/2 + 1 has bottleneck-ness n2/4. In general, node

k has bottleneck-ness k · (n− k), which is maximized for k = n/2.

(10, 11) Note that each clique consists of
(
s
2

)
edges so that there are k ·

(
s
2

)
edges inside the

cliques and k edges between the cliques. We get

SimpleModularity(C) =
1

k ·
(
1 +

(
s
2

)) · k ·

((
s

2

)
−

(
s

2

)
·
k ·
(
1 +

(
s
2

))(
k·s
2

))

=

(
s
2

)
1 +

(
s
2

) (1− k ·
(
1 +

(
s
2

))(
k·s
2

))

=

(
s
2

)
1 +

(
s
2

) −
k ·
(
s
2

)(
k·s
2

)
=

(
s
2

)
1 +

(
s
2

) − s− 1

k · s− 1
.

The number of edges inside the communities increases by 1 (the edge between C1

and C2) while the number of intra-community pairs increases by |C1| · |C2| = s2.

Hence, the expected number of edges inside the communities increases with

s2 ·
k ·
(
1 +

(
s
2

))(
k·s
2

) = s
s+ 1

k · s− 1
.

Thus, simple modularity increases whenever

1 > s
s+ 1

k · s− 1
,

which can be rewritten to

k > s+ 1 +
1

s
.

Hence, for a sufficiently large number of cliques, merging two adjacent cliques results

in an increase in the simple modularity. This shows that maximizing simple modular-

ity does not always result in natural communities.

(12) Expected degree (s − 1)pin + (k − 1)spout. Dividing by |N | − 1 gives the expected

density.

(13) From the previous exercise, we have

Density(N) =
(s− 1)pin + (k − 1)spout

|N | − 1
.

The expected Simple Modularity is given by

k

(
s

2

)
(pin − Density(N)).

55NETWORKS GOES TO SCHOOL

0

1

2

3

4

5

6

7

8

10

11

12

13

17

19

21

31

30

9
27

28

32

16

33

14

15

18

20
22

23

25

29

24

26

Figure 5.0.1. Answer to Exercise 4.

(14) (1− pin)
s−1 and n(1− pin)

s−1

(15) Infinity. Each node has a positive probability (1 − pin)
s−1 of not being connected to

any community members, leading to an infinite distance. Thus the expected value is

at least∞ · (1− pin)
s−1 = ∞.

(16) s2pout and pout.

(17) (s− 1)p2in + (k − 1)sp2out and 2(s− 1)pinpout + (k − 2)sp2out.

(18) We can take the derivative of s(1/2)s−1 w.r.t. s to see that it is decreasing for s ≥ 2,

so the smaller community is expected to have more nodes disconnected from the

community.

Probability theory
(19) Since P(T ≥ t) = 1− P(T < t), it is sufficient to show

P(T13 < 20) > P(T12 < 20).

We use that
Tij − µij

σij
∼ N (0, 1).

Table 4.0.4 on page 52 then gives

P(T13 < 20) = P
(
T13 − 15

2
<

5

2

)
≈ 0.9938

56 NETWORKS GOES TO SCHOOL

and

P(T12 < 20) = P
(
T12 − 12

4
< 2

)
≈ 0.9772,

from which the conclusion follows.

(20)

E[X + Y] =

∫
R

(∫
R
(x+ y)f(x, y)dy

)
dx

=

∫
R

(∫
R
xf(x, y)dy

)
dx+

∫
R

(∫
R
yf(x, y)dy

)
dx

=

∫
R

(∫
R
xf(x, y)dy

)
dx+

∫
R

(∫
R
yf(x, y)dx

)
dy

=

∫
R
x

(∫
R
f(x, y)dy

)
dx+

∫
R
y

(∫
R
f(x, y)dx

)
dy

=

∫
R
xf(x)dx+

∫
R
yf(y)dy

= E[X] + E[Y],

where used in the third line that we can change the order of integration.

Road Traffic Analysis

Dijkstra's algorithm for reliable routes

(21) In order to use Bi-directional Dijkstra’s algorithm, we first need to formulate the

problem as a shortest route problem. This can be done by replacing the probabilit-

ies that are assigned to the edges by the negative of their logarithm. Therefore, the

most reliable route of the network in Figure 4.0.2 can be determined by finding the

shortest route of the network in Figure 5.0.2.

57NETWORKS GOES TO SCHOOL

1

2

3

4

5

6

7

.223

1.204

.105

.693

.163

.051

.357

.511

.223

.105

Figure 5.0.2. Most-reliable-route representation as a shortest-route model

Applying Bi-directional Dijkstra’s algorithm gives the route

1 → 2 → 4 → 3 → 6 → 7,

from which it follows that

− log p17 = − log p12 − log p24 − log p43 − log p36 − log p67

= 0.223 + 0.105 + 0.163 + 0.051 + 0.105

= 0.647.

We conclude

p17 = e−0.647 ≈ 0.524.

Using this route, there is a probability of 52.4% of not getting stuck in a traffic jam.

Dijkstra's algorithm travel times
(22) We learned from Exercise 20 that we can simply apply Dijkstra’s algorithm to find the

route that minimises the sum of the means. This gives the path

1 → 3 → 4 → 6 → 7,

which has an expected travel time of 29 minutes.

Using the hint, we find that

T17 = T13 + T34 + T46 + T67 ∼ N (29, 33).

Therefore,

P(T17 ≤ 40) = P
(
T17 − 29√

33
≤ 40− 29√

33

)
≈ 0.9722.

58 NETWORKS GOES TO SCHOOL

The alternative route is distributed as

T̃17 = T13 + T35 + T57 ∼ N (33, 11).

Therefore, the probability of arriving on time is

P(T̃17 ≤ 40) = P
(
T̃17 − 33√

11
≤ 40− 33√

11

)
= 0.9826.

We observe that the route with the lowest expected travel time is not the route that

gives us the highest probability of arriving on time for our job interview.

